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ABSTRACT 

Let 1 < a < p < oo and F be an arbitrary closed subset of the interval [a, p]. 
An Orlicz sequence space l* (resp. an Orlicz function space L#(g)) with 
associated indices a and p is found in such a way that the set of values p for 
which the/P-space is isomorphic to a complemented subspace of 1* (resp. 
L¢(#)) is precisely the given set F (resp. F U {2}). Also, a recent result of 
Herwindez and Peirats [1] is extended showing that, even for the case in 
which the indices satisfy a~ < 2 < fl~, there exist minimal Orlicz function 
spaces L#(.u) with no complemented copy of l p for any p # 2. 

O. Introduction 

The study of symmetric structure of the Odicz spaces has been carded out 
mainly and among others by J. Lindenstrauss and L. Tzafriri ([5], [6], [79, 
N. Kalton ([4]) and N. Nielsen ([11]) (see also [3], [8], [9]) offering several 
important and deep results. To take a sample, let us mention that the class of 
the minimal Orlicz sequence spaces l # studied by J. Lindenstrauss and 
L. Tzafriri provided examples of Banach spaces containing isomorphic copies 
of/P-spaces for uncountable many p's and, at the same time, no complemented 
copy of any/a-space (see [1 ] for the version of this theorem in the context of 
Orlicz function spaces). 

In general, the problem of determining exactly which spaces P' (in particular 
if-spaces) are isomorphic to a complemented subspace of an Orlicz sequence 
space 1 # does not have yet a complete solution, and full characterization 
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remains to be found. However, some useful necessary or sufficient conditions 
are known. Thus, J. Lindenstrauss and L.'Tzafriri, in [6], introduced the 
notion of strongly non-equivalent function to the set Et,~, proving that a space 
1 ~' is not isomorphic to any complemented subspace of an Orlicz sequence 
space I t if the function ~, is strongly non-equivalent to Et. ~. 

This paper deals with the l~-complemented copies (1 < p < ~ )  in Orlicz 
spaces: One of its goals is to extend to the context of Orlicz function spaces 
Lff, u) the above-mentioned result on strongly non-equivalent functions in 
sequence spaces I t ([6], [7]). Another purpose of this paper is to study the 

following inverse problem : Given an arbitrary set F o f  real numbers p > 1, find 
Odicz (sequence and function) spaces Lt(/z) such that the set of values p for 
which the/P-space can be complementably embedded into L~(g) is exactly the 

prefixed set F. 
In Section II we answer this problem for closed sets F and Orlicz sequence 

spaces. Thus, the main result (Theorem 2) asserts that given 1 < ct < fl < 
and a closed subset F of the interval [a, fl], there exists always an Orlicz 

sequence space l t with indices a t = a and fit = fl which contains a comple- 
mented copy of ! p if and only if p E F. The proof of this result makes use of the 
method of constructing Orlicz functions associated with sequences of O's and 
l's, which was developed by J. Lindenstrauss and L. Tzafriri in ([6], [7], [8]). 

Section III is devoted to Orlicz function spaces: The first part introduces the 
concept of strongly non-equivalent function to E~.l, studying its connection 
with weighted Orlicz sequence spaces ITS). As a consequence, this allows us to 
give a criterion to insure that reflexive Orlicz function spaces L t ~ )  contain no 
complemented copies of 1 r (p  ÷ 2): The function t p must be strongly non- 
equivalent to E~.~. This fact constitutes a partial extension of([6] Theorem 2.2) 
to Odicz function spaces. Also, in this context we solve the above-mentioned 
inverse problem for closed sets F U {2} (Theorem 7). 

Finally, some applications to the class of m i n i m a l  Orlicz function spaces are 
given. In particular, Corollary 10 answers in the affirmative a question in [1] 
(Remark, page 360), showing that the main result in [1] is also true for the case 

2E(a~,fl~).  Thus, there exist reflexive Orlicz function spaces Lt(g) with 

arbitrary indices without complemented copies of l p for any p ¢: 2. 

I. Preliminaries 

Let us start with some notations and definitions. Given a positive measure 
space (~, ~,/~) and an Orlicz function ¢ (i.e., a continuous convex nondecreas- 
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ing function defined for x > 0 so that ~(0) = 0 and ~(1) = 1), the Orlicz 

function space L # ~ )  is defined as the set of equivalence classes of p-measurable 

scalar functions of (f~, Z, #) such that 

for some r > 0. 

The space L~(~) endowed with the Luxemburg norn~ Ilfll-- 
inf{r > 0 : m r ( f )  < 1 } is a Banach space. 

Similarly the Orlicz sequence space l ~ consists of all those sequences x - (x~) 
of  scalars for which there is an r > 0 with 

mr(x)  = Y, < oo. 
nffil 

Recall that a function ~ satisfies the A2-condition at 0 (resp. at o0) if there exist 
constants M > 0 and So > 0 with ¢(So) > 0 such that ¢(2s) _-< M ~ s )  i f0  < s < So 
(resp. s >_- So). If ~ satisfies the A2-condition at 0 then the sequence of unit  
vectors (en) is a symmetric basis of  l ~. 

We assume that the Orlicz function ~ satisfies the A2-condition at oo and at 0, 
so the associated indices verify 1 < a~ ° < flgo < oo and 1 < ot~ < fl~ < oo (cf. [8], 
[9]). We shall make use of the following compact subsets related to ~ in the 
space C(0, 1): 

E~,~ tO(r) " r < s  ; E,--- ,>0N E ~  

~(rt) } 
E ~ - - t O ( r )  " r ~ s  ; Ego= s>00 E~s 

C¢,s = c o n v  E,.~, C~ = cony E~ 

C~ -- conv E~,,; Cgo -- cony Eg o 

for every s > 0 ([5-8]). For a detailed study of Odicz spaces and their structure 
we refer to ([10], [8], [9]). 

It was proved in [7] that for Orlicz sequence spaces l * the following 
statements are equivalent: (a) l p is isomorphic to a subspace of  P; 
(b) p ~ [a#  fld; (c) the function t p is equivalent to some function in C~.,. 
(Furthermore when t ° is in E~,I, the space I s is isomorphic to a complemented 
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subspace of IS.) For Orlicz function spaces LS(.u) the following holds: p E 
[a~ °,//~] if and only if the unit  vector basis of l p is equivalent to a sequence of 
functions in LS(g) with mutually disjoint supports. 

On the other hand, an Orlicz sequence space I s does not contain any 

complemented subspace isomorphic to I p if  the function t p is strongly non- 
equivalent to E,,l ([6], [8] Theorem 4.b.5). In general, a function ¥ is strongly 

non-equivalent to E,.l if  for every constant K ~ 1 there exists m(K)-points 
t iE(0,  ~) such that, if K---oo, re(K)= o(K °) for every cr > 0, and for every 
2 E(0,  1) there exists at least one index i, 1 < i < m(K) for which 

~(2t~) ~(2)¥(t,) (E [1' K]" 

(For the ordinary equivalence - -  instead of  "strongly" - -  the above result is 
not true; see N. Kalton [4].) 

The class of  the minimal Oflicz sequence spaces I s has been studied in ([6], 
[7], see also [81): An Orlicz function ¢ is called minimal (at 0) if, for every 
function ~uEE,,~, we have that E~,,~-- Es,~. Examples 4.c.6 and 4.c.7 in ([8]) 
prove the existence of minimal Oflicz sequence spaces l * with arbitrary indices 
(1 < a ,  < fl, < oo) containing no complemented subspaces isomorphic to P' for 
any p > 1. For Oflicz function spaces it has been proved in [ 1 ], by means of  an 
extension of  the notion of minimal  function, that there exist reflexive Oflicz 
function spaces LS(/l) with indices 1 < a~ ° < fl~ < 2 (or 2 _-< a~ =< fl~ < ~ )  
containing no complemented subspaces isomorphic to l p for any p ,  2. 

lI. /P-complemented copies in OrUcz sequence spaces I s 

In this section we deal with the following problem: given a set F of  real 
numbers p > l, find an Orlicz sequence space l * such that the set of values p for 
which the space I p is isomorphic to a complemented subspace of I * is exactly 

the set F.  
The next theorem establishes a first step towards the general solution for 

closed sets given in Theorems 2 and 3. 

THEOREM 1. Let F be a closed set o f  positive numbers with 1 < a-~ 

inf  F _-< sup F = fl < ~ .  Then there exists an Orlicz sequence space I s with 
indices a s = a and fls = fl which contains complemented subspaces isomorphic 

to l v i f  and only i f  p ~ F .  Furthermore t p belongs to E~,, up to equivalence, for 

each p ~ F ,  and t p is strongly non-equivalent to Es,~ for each p ~ F .  
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PROOF. Firstly, by the separability o f F ,  we pick up a dense sequence (Pn) 

in F, verifying that every term of the range of  (Pn) appears infinitely many 

times in the sequence. 
Let us consider the following func t ion fon  [0, + ~ )  defined as follows: 

f ( t ) = O  f o r t E [ 0 ,  1], 

f ( t ) = f ( n 2 ) +  p , ( t - n  2) for t~[n2 , (n  + l)2], n ~ N .  

It is clear that If(t~) - f(t2) I < P I t~ - t21. 
Now, let us define a function ~ on [0, 1] by ~0(0) = 0 and 

~(t) -- exp{ - f (  - log t)} for 0 < t < 1. 

This function ~0 is continuous but not necessarily convex on [0, 1 ]. However, if  

~0' denotes the right-derivative of  (0 we have 

t~'(t) 
a < = f ' (  - log t) < ]/ 

~0(t) 

for every t~ (0 ,  1). Thus, since a >  1 we get that ~(t)/t is an increasing 

function, and hence rp is equivalent to the convex function 

~ t ) = ~  t ¢(u) du f o r t E [ 0 ,  1]. 
dO U 

So ~ satisfies the A2-condition at 0. 
I n 2  Let r. = e , we consider the sequence of functions (q~.)F c E,,~ defined for 

t ~[0,  1] by 

¢.(t) - (o(r.t_____) _ exp{f(n2 ) _ f(n2 _ log t)}. 
¢(r.) 

Then for r.+~/rn < t < 1, it is easily checked that ¢.(t) = tP.. Now, as rn+~/r. 
0 and each value p. of  the range of  (p.) appears infinitely many times in the 

sequence (Pn), there exists a subsequence (~0.~) of (~.), which converges 

uniformly to t p. on [0, 1 ]. Therefore t p, E E ,  for all n E N and hence t p EE¢ for 

every p E F .  Thus t p is equivalent at 0 to a function o f E  s for every p E F ,  and, 

by (cf. [8] page 150), I s has a complemented copy of l p. Moreover, it is easy to 

show that the indices of the function ~ are exactly a s = a and ,8 s = p. 
We pass now to prove that t p is strongly non-equivalent to Es,~ for each 

p ~ F ,  which implies, by Theorem 4.b.5 in [8], that 1 ~ does not contain any 

complemented subspace isomorphic to P. Given p ~ F ,  let e > 0 so that 
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(p - 3e, p + 3e) N F = ~ .  For  each integer n put  m(n) = n 2 and assume the 

existence of  an integer k such that  

(*) e- '~ < ~(Zkl:~) < e '~ 
-- ¢o(Tk)T,; -- 

for i = 1, 2 . . . .  , n 2 and z = e - l  Let 1 < j  < n 2 - n (n > 1), by using the above 

inequality with i = j and i = j + n, we obtain 

e - 2enTP n <_< q)( Tk + j + n ) <_~ e2~zp~ 
-  (Tk+j) 

for 1 < j < n 2 - n .  

We consider now a particular value o f j  in each one of  the following cases: 
(a) j = (n - 1) 2 - k when k < (n - 1)2; 

(b) j = 1 when (m - 1) 2 < k < k + n < m 2 for an integer m > n; 

(c) j = m 2 - k when (m - 1) 2 < k < m 2 < (k + n) for an integer m > n. 

Then, it is easily checked that  in each case 

~ ( T  k +j +n) 
Tq n 

for some q = p~ ~ F .  But, as I q - P l ~ 3e, the above equality implies 

~(zk+Y +~) 

~(,~k + j)q.pn [ e -~ ,  e~], 

which is a contradiction with (.). So, we have obtained that for any integer n 

there exists m(n)  = n 2 points in (0, 1) such that  for any integer k there is at 

least one index i = 1 , . . . ,  n2 for which 

- - ( ~  [ e - %  e~]. 

As m(n + 1) = o(e °~) for any tr > 0, this means, by the A2-condition at 0, that 

t p is strongly non-equivalent to E,.1, which ends the proof, q.e.d. 

In the proof  o f  the following result we will make use of  the method  of  

constructing Orlicz functions by sequences o f  O's and l ' s  developed by 

J. Lindenstrauss and L. Tzafdr i  in ([6], [7], [8]). 

Let us recall that, for fixed 0 < z < 1 and 1 < p '  < p" ,  i f  p = (p(n))~ ° 



Vol. 62, 1988 /P-COMPLEMENTED COPIES 43 

denotes a sequence of digits with p(n) equal to 0 or 1 for each n EN,  then the 

Orlicz function ¢p associated with the sequence p(n) ([8] page 161) verifies that 

{ 0 p ( T  k )  = T p'k+tp'-p')y'~-Ip(n) for k E N ;  

and its indices satisfy ([8] Proposition 4.c.4) 

ag, = p' + (p" - p')ao and #~, = p' + (p" - p')bo, 

where a0 and b0 are real numbers depending on the density of l 's  of p, defined 

by 

a0 lim inf  1 ,+k = - ~ p ( i ) ,  
k~oo n k i=n+l  

1 n+k 
b o = l i m  s u p ~  ]~ p(i). 

k ~ ( ~  n i = n + l  

THEOREM 2. Let 1 < a < fl < oo and F be an arbitrary closed subset o f  the 

interval [a, #]. Then there exists an Orlicz sequence space P, with indices a¢ = a 

and p~ -- fl , which contains a complemented copy o f  l v i f  and only i f  p ~ F. 

PROOV. By the results of Lindenstrauss and Tzafriri ([7], [8] Examples 

4.c.6, and 4.c.7) we can assume that F ~ Z~. 
First, let us show that we can take numbers 1 < p '  < p"  and a sequence 

p = (p(n)) of  0's and l 's such that the associated Orlicz function ~op has indices 

a , = a < f l , = f l .  Indeed, for 0 < a < b < l  and a / b < ( a - 1 ) / ( ~ - 1 ) w e  
construct a sequence of  positive integers (nj), with n i > 5, such that 

- =  - > _ - b .  
j=~ nj j=l 

Proceeding as in ([8] page 165) we define two sequences of zeros and ones, as 
follows. Let mj = nxnz. • • nj_ I (ml  = 1) andAj (resp. Bj) be the block of the first 
mj digits ofp (resp. q). Thus At consists of the digit 1 and B~ of the digit 0, while 

Aj and By are defined inductively by 

(nj - 1) t imes (nj - 1) t imes 

It is clear that for aj (resp. bj) denoting the number  of ones inside Aj (resp. Bj), 

a j + , = ( n j - 1 ) a j  + bj; bj+t=(nj - 1 ) b j  + aj 
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and, hence, 

J 
aj+, - bj+l = (nj - 2)(a s - bj) = l'I (n, - 2) > O(ms+,) 

i--I 

where 0 = IIT.l (1 - 2/nj) > 0. Finally, as ao _-< a < b < b0 we can find p '  < p" 
verifying 

ot -- p'  + (p" - P')ao = a~,, 

fl = p' + (p" - p')bo = fig,, 

with 

p , _ _ l + ( a - 1 ) b o - ( f l - l ) a o > l  

bo-ao 

because 

a - I  ao <_a< 

b o - b  f l -  i" 

We consider  now, as in Theorem 1, a dense sequence ( P 2 n  - t)~ in the set F ,  so 

that  every element of  the range appears infinitely many  times. Let us define a 

cont inuous  function ~ on [0, 1] as follows: q~(0) = 0, ~(1) = 1, and 

~p ~(r.) i fr.+t < x < r .  andneven  

-- 
l l - . ' t  

] ( x } "  tp(r.) i f r .+ l  < x  _-< r. and n odd  
t \r . /  

where r. = e-m. for n E N (r0 = 1) and Cp is the above Orlicz function asso- 

ciated with p and Cpp(1) = 1. This  funct ion ~ is not  necessarily convex, but  as 

$(x)/x  is an increasing function, the funct ion ~ is equivalent  at 0 to the convex 

function ~ defined by 

~ t )  = f /  ~(u) du 
u 

for t ~ [ 0 ,  1]. 

Hence  ¢~ satisfies the A2-condition at 0 too. 

In the same way as in Theorem 1, by considering the sequence 
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= 

for n odd, it is proved that for each p ~ F the function t p ~ E~ and hence the 

sequence space l ¢ has a complemented copy of I p. 

Now, in order to prove that l ¢ does not contain any complemented subspace 

isomorphic to I p ifp ~ F,  we will show that t p is strongly non-equivalent to E,,~, 

and then we apply ([6], [8] Theorem 4.b.5). Fix p ~ F ,  let e > 0 be such that 

(p  - 3e, p + 3e) A F = ~ .  For each odd integer n, put re(n) = 5m.+~ and 

assume the existence of an integer k such that 

< 
K ;  = < 

for i = 1, 2, . . . .  5m.+~ and where K. = e  ~m, for J > 0  and z = e  - l .  Let 

1 _-<j < 4m~+~; by the above inequality with i - - j  and i = j  + m~, we obtain 

(:) Kn2"t pm" <~ ~9('rk +j+m') <_~ I~n ~pm,~ 
 o(T k +y) 

for 1 < j  --_< 4mn+l. 
We distinguish now the following five cases depending on the possible values 

of  k: 

(a) k < m. ,  
(b) mn, _-< k _-< k + 4m.+~ < m.,+l for some odd integer n '  > n, 
(c) m~, < k < k + 4m.+~ < m~,+t for some even integer n'  > n, 
(d) m., < k < m..+~ < k + 4mn+~ for some even integer n '  >_- n, 

(e) m., _-< k < m.,+~ _-< k + 4m.+1 for some odd integer n '  ->_ n. 

For the cases (a), (b) and (d) let j = m ~ -  k, j = 1, and j = m n , + l -  k 
(_-< 4m~ + ~) respectively. Then, for these cases, it is easily checked that 

Kn 2TOm" < ~(,~k+j+m,) = T qmR ~-~ K~n "rpm" 

for some q = P2~- ~ E F.  From t q - P I > 3e we deduce that K~ > e ~m., so J > e. 

Case (c). As every block ofp or ~/of length 3m. + ~ contains one block equal to 

A. and another block equal to B., there exist integers j~, J2 with 1 <j~, 

J2 --< 3m~+l for which 

~P('[k +j~ +m'-mm') = ~p(.[m,) 
+j,-...) 
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and 

Now, using (:) we obtain 

~p('~k +j2+mn-m.,) 

(Op(Tk +j:m. ") 

On the other hand 

Kn 4 ~ ~p (Tm') ~ K4n . 
~TI("C m.) 

~ ?  ( T i n  " ) = .c(P" - P'XZ ~s. , P ( i ) -  ~(i)) ~ . t (P" - P ' ) ( a , -  b ~) ~_~ ~(P" - P')~an . 

~rt(T m') 

Hence, it results that 

Kn > exp { (p" - p')Om"} (p" - p')O 
and J > 

4 

The case (e) has two subcases: (el) k + m.+l  < m.,+l and (e2) mn,.,-i <= k + 
m.+l  < k + 5m.+1 < m.,+2, both with an odd integer n'. Then reasoning in 
(et) as in (b), and in (e2) as in (c), after some easy computations we conclude 
that J > e and J > (p" - p')O/4. 

In conclusion, if 

J = m i n ( e ,  ( P " -  P')0) > 0 ' 5  

for any integers n and k we have 

~(T'+k) 
[e-'m., e6m.] ~('rk)z pi 

for at least one index i -- 1, 2 , . . . ,  5m. + t- Moreover, since in the construction 
of  the sequence (ns) we can take nj = hfl for some big enough h, we have that 

m.+ l = h"(n!) ~ and hence 

m(n + 2) = 5m.+3 ffi o(e ~m.) ffi o(KD 

for every a > 0. This means that t p is strongly non-equivalent to E9,1 for each 

p q~F. 
Finally, it remains to show that a¢ = a and f19 = fl- Let us suppose that 

p < a = ag , ,  then there exists an integer h so that 
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 P(rg+k) < 1 
~p(rg)~ k = 

for any integers n, k > O, and hence 

¢(rg+k) < 1. 
= 

Now, for 0 < 2 < 1 and 0 < t _-< rh, i f  we consider integers n and g verifying 

rg < ;t < r g -  ~ and r k < t _-_ r k-  ~ ( k  >= 2) ,  we find that  

(0(2t) < q(rg +k-2) < 1 

q ( x ) t p  = = < 

and therefore p < a~ for every p < a. So a < a~. 

Let us assume now p < a~. There exists a constant  M > 0 such that  

~o(r,,At) < m 

¢(r~2 )t p 

for 0 < A _-< l, 0 < t =< 1, and every integer n. But 

lim ~°(r2nt) = % ( t ) ,  

and so 

~°e(At) __<M. 
(0p(A)t p 

Hence p < ag, = a for any p < a ~ ,  and a~ < a. The proof  o f  the remaining 

equality fl~ = fl is similar, q.e.d. 

The version of  the above Theorem in the ease a = 1 takes a slightly different 

form because then an Orlicz sequence space 1 ¢ with a~ = 1 must  contain a 

complemented copy of  P, independently o f  1 ~ F  or 1 ~ F :  

THEOREM 3. Let  1 = a < fl < oo and F be a closed subset o f  the interval 

[a, fl]. Then there exists an Odicz sequence space 1 ~ with indices a~ = 1 and 

tic = fl so that 1 ~ contains a complemented copy o f l  p i f  and only i f  p E F O { 1 }. 

PROOF. An Orliez sequence space l ~ with a¢ = 1 < fie < oo contains a 

complemented copy of  1 ~ since the dual space (1~) * has a subspace isomorphic 

to Co and Proposit ion 2.e.8 in [8]. Then, in the non-trivial case 1 = a < f l ,  we 
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can replace F by the closed set F' = F U { 1 } and proceed in a similar way as 
in the above Theorem. The only change needed is to consider an Odicz 
function ep, associated with the sequence p of O's and l's, having indices 

1 <otp, <fl~, = f t .  q.e.d. 

III. Complemented copies in Orlicz function spaces L*(#) 

We start this section extending the concept of "strongly non-equivalent 
function", given in ([6], [7]) for Oflicz sequence spaces, to the context of Odicz 
function spaces L*~): 

DEFINITION. Let ~ be an Odicz function satisfying the A2-condition at oo 
(resp. at 0; on R+). An Orlicz function ~ is called strongly non-equivalent to E~,~ 
(resp. E~,~; E~,~ U E~,~) if there exist two sequences of numbers (K.) and integers 
(m.), so that for n ~ oo, K . - - ~  and m. = o(K~) for every t7 >0 ,  and 
m.-points t~E(0, 1) such that for every ;~E[max~ t7 ~, oo) (resp. 2E(0, 1); 
2 E(0, oo)) there is at least one index i, 1 _-< i _-< m. for which 

K..  

The following theorem generalizes a remarkable and useful result due to J. 
Lindenstrauss and L. Tzafriri ([6], [8] Theorem 4.b.5). Consider weighted 
Orlicz sequence spaces l*~) for arbitrary positive scalar sequences/~ = ~,) ,  
i.e., the space of all sequences (x,) verifying Z~ ~(Ix, I/s)ll, < ~ for some 
s > 0 (cf. [2]). Clearly these spaces l*(~) have an unconditional Schauder basis 
in the sequence of unit vectors (e,) when ~ satisfies the suitable Az-condition. 

THEOREM 4. Let ~ be an Orlicz function with the Ae-condition at oo (resp. 
at O) and let ~n) be a positive scalar sequence with ~,l~. < oo (resp. inf./~. > 0). 
I f  ~a is an Orlicz function strongly non-equivalent to E~.~ (resp. E¢,~) then l" is not 
isomorphic to any complemented subspace of  l¢~ ). 

PROOF. The proof is basically similar to ([6], [8] Theorem 4.b.5). We 
develop it putting emphasis on the necessary changes for our situation. 

Let us assume that ff is isomorphic to a complemented subspace of l*(~). By 
([8] Propositions 1.a.12 and 1.a.9) there exists a normalized block basis 
wj = Zi~o, a,e , j  ~ N  of the unit vectors (e,) in l*(,u), such that (wj) is equivalent 
to the unit vector basis of if, and also there is a projection P:  l*~) ~ [w~]. 
From the conditions on the weight sequence (Pn) it follows that we can assume, 
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w.l.o.g., that a~= > 1 (resp. 0<a~  < 1) and that the functions ~ ( t ) =  
X~e¢, O(ait )#~ satisfy 

I ~ ( t ) - C , ( t ) l  <1 /2  j for all t E [0,1], a l l j ~ N  

for some Orlicz function ¢, E C~.~ (resp. C¢,~) equivalent to ¥ at 0. 
First, the case Z/z~ < oo: For convenience we will consider the function O0 

defined by ¢0(x) = O(x) for x >_- 1 and Oo(X) = 0 for 0 < x < 1. As we can 
suppose ~ with the A2-condition on R +, there is a p  > 0 such that ¢(st) < sPO(t) 
for s > 1 and t > 0. Now as V, and hence q/, is strongly non-equivalent to E~,~, 
there exist K~ > 0 and mn points th E (0, 1), h = 1 , . . . ,  m~ with 

) K• II P II-P, U P II 
° 2.3"Ro 

(e  = 1/p and R0 a positive constant), and so that for every ;t > 1 there exists at 
least one h, 1 < h _< m~ such that 

~o(2t,) ~ K~]. 

¢0(~.)~/(th) 

We can assume, w.l.o.g., that I ¢6(t) - ¢,(t) l < min{~'(th) : 1 < h < m~ } for all 
tE[0 ,  11. 

Reasoning as in ([8] Theorem 4.b.5) we split each of the sets aj into 2m~ 
disjoint subsets of integers Jfl and r/h so that, for every 1 -_< h =< m~, 

Oo(a~th) 1 < - -  i f i ~ J  h 
~)o(a,)~/(th) K~ 

and 

¢o(aA) >Kn if i~r / f  . 
f)o(a,)~l(th) 

Then for j > 1 and 1 < h _-< mn 

K~fU(th) Y, ¢o(a,)/z~ < ~ (bo(adh)lZ~ < ~.(th) <--_ 2~(th), 

which implies 

m, < 2m n 
Oo(ai)#~ < 2 and thus ~ ~ O0(a~)B, -- 

i ~  Kn h-I iE~ Kn 
fo r j  ~ 1. 

Now define the vectors 
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m n 

vj= ~ Y~ aiei. 
h = 1 iE~l~ 

Every function F ~  C;,~l satisfies F(s t )< sPF(t) for all s > 1 and t > 1. So, if 
we set 

m n 

Fj(t) = E E ~a(ait)lti,, 
h = 1 iEtl~ 

then Fj(t)/Fj ( 1 ) E C~l and therefore 

F/(2 II P II ) < 2e IIP IIPFJ(1) < 2P+~ IIP IIPm./K. < 1, 

which means that 

1 
II vj II 

2 II P II 

If  we write u~ = Zie¢~ a~ei, for 1 < h < m.,  j ~ N, it can be proved, in the 
same way as in ([8] page 151), using the "diagonal" operator, that for any set of 
coefficients {b/}/=l the norm of the vector ~]=l b/wj satisfies 

" " bju?, 2~ bjwj < 2 m .  II PII Y. • 
j = l  j = l  

Now, choosing an integer J so that 2M < Z/=~ (U(th) < 3M for the constant 
M = K . / 3  (> 1), we obtain that M<X]=~ ~ ( t h ) < 4 M .  Then, by the 

A2-condition, 

s th, wj ( + )  I < M  " <  Y. =<2m. llPl[ Y~ th, U~' • 
j = l  j = l  

On the other hand, 

J J 
Y~ Y, Oo(a~th)lzi < K #  ~ Y, (U(th) Y~ 

j = 1 iE6]i j -- 1 iEJ]J 
¢ o ( a i ) l t i  <= 1. 

Then 

J 
Y~ th,@ <= Ro 

j = l  

where Ro is a positive constant. (If E#, <_- ½ we can take Ro = 2.) Hence for ( + ) 
we conclude that 
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m....2~ > 1 
II e II- l, 

K~ 2.3~R0 

which contradicts the choice of m~ and Kw. This ends the proof  of the theorem 
in this first case. 

The proof  in the other case infn/a~ > 0 is analogous (except that we do not 
need to redefine the function ~). q.e.d. 

R~MARK. A similar result is true for the case of spaces P(#)  with arbitrary 
weight sequences (Pn). Namely, if a function ~v is strongly non-equivalent to 
E~,~ U E~,I then l ~' is not isomorphic to any complemented subspace of l~(/t). 

PROPOSITION 5. I f  L ~(l~ ) is a reflexive Orlicz space over a finite (or a-finite) 
measure space (~, Y., lt), then L~(p) contains a complemented copy of  P for 
p ~ 2 i f  and only i fP  is isomorphic to a complemented subspace of  a weighted 
Orlicz sequence space l~(lt) for an = p(A~) of  a disjoint sequence (An) in Y_,. 

PROOF. The "if" implication is obvious since the sequence space P(a)  is 
canonically embedded into L*(p) as a complemented subspace. 

Let us suppose now that L*(a) contains a complemented copy o f P  forp > 2. 
Reasoning in the same manner  as in the proof  of Proposition 4 of [ l ]  (also [12] 
fo r / t  a-finite), i.e. using ([9] Proposition 1.c.8), we get that there exists a 
disjointly supported sequence (g~)3 in L*(p), so that its span [g~] is isomorphic 
to P and complemented in L*(p). Now, by the density of the step functions in 
L*(a), for each n ~ N there are mutually disjoint sets Bk,~ C supp(gn) = A~ and 

real numbers (ak,n)~'--1 such that h~ = ~ ~  i ak.ngs~., verifies II h~ - gn II < 1/2~. 
Hence, by a standard perturbation result ([8] Proposition 1.a.9), the span [hn] 
is isomorphic to P.Finally, the subspace [(ZB~.,)]k,,, which is isomorphic to the 
weighted space l~(llk,~) for Pk,n = I~(Bk,n), contains a complemented subspace 
isomorphic to P. 

In the other case 1 < p < 2, the result is now easily proved by duality (see, 
e.g., [ 12] Theorem 14). q.e.d. 

A direct consequence of Theorem 4 and Proposition 5 is the following 

Corollary that gives us a version for function spaces L~(p) of  the J. Linden- 
strauss and L. Tzafriri result for Orlicz sequence spaces 1 ~ ([6], [8] Theorem 
4.b.5): 

COROLLARY 6. Let L~(p) be a reflexive Orlicz function space over a finite 
(resp. a-finite) measure space (~,lt) .  I f  the function t p, for p ÷ 2, is strongly 
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non-equivalent to E,q; (resp . E; u E@,,) then the space 1P is not isomorphic to a 
complemented subspace of L@(p). 

We are now ready to study the inverse problem in the context of Orlicz 
function spaces L4@): 

THEOREM 7. Let 1 < a S j3< a, F be a closed subset of [a, j31, and (R, p )  
be a non-purely atomic finite measure space. Then there exists an Orlicz 
function space LYp)  with indices a," = a and&' = psuch that L y p )  contains a 
complemented copy of lp ifand only i f p  E F U {2). 

PROOF. We can assume F # 0.  The case F = 0 was solved in [ I ]  and also 
below in Corollary 10. 

First, let us prove the existence of an Orlicz function $ with indices a," = a 
and B," = j3, so that tP is equivalent at 0 to a function of E," if p E F, and tP is 
strongly non-equivalent to E; if p 4 F. Indeed, let us define the symmetric 
function @(x)  = llp(1lx) of the function y, considered in Theorem 2, i.e., 

where the sequences (p,) and (m,) and the function vp are as in Theorem 2. 
From the equality E," = (2,) we obtain that tP is equivalent at 0 to a function 
of E," if p EF.  Moreover a," = a and B," = j3. 

Now, to show that tP is strongly nonequivalent to E;, if p 4 F, we proceed 
in the same way as in Theorem 2. Let e > 0 be so that ( p  - 38, p + 38) n F = 

0. For each odd integer n put m ( n )  = 5mn +, and assume there exists an 
integer k h 5m, + , verifying 

for i = 1,2, ..., 5mn+,; t = e  and K, =earn. (6>O). Let 1 S j S 4 m n + , ;  by 
using the above inequality with i = j and i = j + m, it results that 
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Kn2,'c -pro. K2,"(-Pm. 

for k _-> 5ms+l. 
Now, for each one of  the following cases we have an appropriate index 

1 < j  < 4ms + ~, which leads to a contradiction (we omit the details). Namely, 

(a) The case k < 5m, +t is now excluded. 

(b) For ms, ffi < k - 4ms+~ < k < m,,+~, with n ' >  n and odd, t ake j  -- 1. 

(c) For ms, < k - 4ms+~ < k < ms,+~, with n'  > n and even, takejl,J2 as in 

the case (c) of  Theorem 2. 

(d) For m s , < k - 4 m s + ~ < m s , + ~ < k  with n ' > n  and odd, take j - -  

k - ms,+ 1. 
(e) For ms, _-< k - 4rns+~ _-< m.,+~ < k with n' > n and even, we have two 

subcases: 

(el) If ms,+l < k - m.+l < k < m,,+2, t ake j  = 1. 

(e2) If ms, < k - 5rns+l _-< k - m.+l < rn,,+, we consider ji, j2 as in the 

respective (e2) subcase in the proof of  Theorem 2. 

In conclusion, t p is strongly non-equivalent to a function of  E~.~. 
Finally, let us consider the Orlicz space L ~ )  where ~ is a convex function 

equivalent to ~ at ~ (f.i. A t )  = f f  (~(x) /x )dx) .  Thus a~  ffi a and p~ =/~, and 

the reflexive Oflicz space L ~ )  has a complemented subspace (the Rade- 

reacher functions span) isomorphic to 12 (cf. [9]). Also L*~)  contains a 

complemented copy of I p for each p E Fsince t p E E~ and ([7] Proposition 4.4). 

The converse is immediate using Corollary 6. q.e.d. 

REMARK I. In the case I ffi a < p < oc we could give some partial results, 

but not as complete as for Orlicz sequence spaces I ~ (Theorem 3). 

REMARK 2. Let us denote by Q~ (resp. ~) the set of those p >_- I for which 

the Orlicz function space L*(u) (rcsp. Orlicz sequence space I *) contains a 

complemented copy of I p. Theorems 7 and 2 give rise to the question of 

whether the sets Q#~ and Q~ are always closed for every Orlicz function ~. 

The above results will be considered now in the context of  the class of 

minimal Orlicz functions studied in [6], [7], [8] and [1]. Firstly, let us 

introduce the following 

DEFINITION. An Oflicz function ~ with the A2-condition is called distinc- 

tive (resp. at ~ ;  at 0) if  for any positive sequence ~ . )  (resp. with Z/~s < oo; 



54 F.L. HERNANDEZ AND B. RODRiGUEZ-SALINAS Isr. J. Math. 

inf . / t ,  > 0 )  the weighted sequence space l ~ )  is isomorphic to the Orlicz 

sequence space l ~. 

In other words a function ~ is distinctive at 0 if every block basis with 
constant coefficients of the canonical basis (e,) of l ~ spans a subspace which is 
isomorphic to l ~ itself. 

The functions t p are trivial examples of distinctive functions, and the 
complementary function 0 of  a distinctive function 0 is also a distinctive 

function, since 

l~(g) = (l~(#)) * ,-~ (l~)* _~ l ~ 

for any arbitrary weight sequence (g,). 
Proposition 5 takes, for this class of distinctive functions, the following nice 

form: 

PROPOSITION 8. Let L~(g) be a distinctive reflexive Orlicz space over a 
finite (or a-finite) measure space not reduced to a finite number of  atoms. Then 
L~(g) contains a complemented copy of  lP for p ÷ 2 if  and only if  l ~ contains a 
complemented copy of  l p. 

Inside the class of the distinctive functions at 0 are the important  class of the 
minimal  functions introduced by J. Lindenstrauss and L. Tzafriri ([6], [7], see 
also [8]). This follows from Proposition 4.b.7. in [8]. 

More generally, it occurs that the general minimal functions studied in [ 1 ], 
[2] are distinctive functions: Recall that ~ is called minimal (at oo) if for 
~EE~,I,  as a subset of the space C(0, ~ )  endowed with the compact-open 

topology, E~,I = E~,I. 

PROPOSITION 9. I f  (~ is a minimal function then ¢ is a distinctive function. 

PROOF. Let/~ ----- (/~,) be an arbitrary weight sequence and positive scalars 
r. > 0 so that / t ,  -- 1~Mr,). Then the functions (Mr, .)~Mr,)) belong to E~,~ t3 
E~,~. If(e.)  denotes the canonical basis of/~, the sequence (f~) = (r,e,) is a basis 
for l~(/t). By the minimality of  the function ~ ([ 1 ] Proposition 1) we have that 
E~,~ = E~,~ = E~, and so we can take a sequence (s,) converging to 0 such that 

Mr.t) Ms.t) I 1 
Mr.) Ms.) = 2" 

for all rE[0 ,  1]. This implies that  for w. = 1~Ms.), the basis ( g . ) =  (s.e.) of 
l~(w) and (f.) are equivalent. Hence the space l~(/t) is isomorphic to l~(w) with 
w. ~ oo, which by Proposition 4.b.7 of  ([8]) is isomorphic to l ~. q.e.d. 
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The above results allow us to answer a question in [1] (Remark, page 360) to 
show the main Theorem in [ 1] is also true for the case o~ < 2 < fl~" 

COROLLARY 10. Given 1 < a < fl < ~ arbitrary, there exists a min imal  

Orlicz function space L ~(tz ) over a f inite (or a-finite) measure space with indices 

a 7  = ol and fl~ = fl and which contains no complemented subspace isomorphic 

to lP for  any p v ~ 2. 

PROOF. Let us consider the minimal Orlicz function ~ defined by 
J. Lindenstrauss and L. Tzafriri in [6], [8] (Examples 4.c.6 or 4.c.7) with 
indices a ,  = a and ~ = 8. Hence the Orlicz sequence space 1 ~ does not have 
any complemented copy of l p for p > 1. Then the restriction of the function 
to [0, 1] can be extended to the whole [0, ~ )  defining a general minimal  
function ([ 1] page 357) denoted also by ~. Thus, the associated indices satisfy 
a ~  = a ~  = a and fl~ = fl~ = f l  ( [ 2 ] ) ,  and by appeal to Propositions 9 and 8 this 

finishes the proof, q.e.d. 
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